Table 2. MAE, RMSE, and t-test results for each model, comparing the actual bone age to the predicted bone age for both the original images and the images subjected to the contrast conversion algorithm
Model | Items | Original | Image contrast conversion methods |
CLAHE | FCE | HE |
CNN | MAE | 26.05 | 25.81 | 32.21 | 31.74 |
RMSE | 2.60 | 2.58 | 3.22 | 3.17 |
P-value | | <0.05 | 0.22 | <0.05 |
ResNet 50 | MAE | 43.69 | 46.58 | 44.63 | 54.35 |
RMSE | 4.37 | 4.66 | 4.46 | 5.43 |
P-value | | <0.05 | <0.05 | <0.05 |
VGG 19 | MAE | 34.26 | 36.09 | 34.86 | 33.08 |
RMSE | 3.43 | 3.61 | 3.49 | 3.31 |
P-value | | <0.05 | <0.05 | <0.05 |
Inception V3 | MAE | 34.54 | 36.03 | 34.94 | 33.29 |
RMSE | 3.45 | 3.60 | 3.49 | 3.33 |
P-value | | 0.25 | <0.05 | <0.05 |
Xception | MAE | 32.24 | 30.13 | 31.64 | 34.13 |
RMSE | 3.22 | 3.01 | 3.06 | 3.41 |
P-value | | 0.49 | 0.19 | 0.05 |
MAE, mean absolute error; RMSE, root mean square error; CLAHE, contrast limited adaptive histogram equalization; FCE, fuzzy contrast enhancement; HE, histogram equalization; CNN, convolutional neural network; ResNet 50, Residual Network 50; VGG 19, Visual Geometry Group 19.