Table 2. MAE, RMSE, and t-test results for each model, comparing the actual bone age to the predicted bone age for both the original images and the images subjected to the contrast conversion algorithm

Model Items Original Image contrast conversion methods
CLAHE FCE HE
CNN MAE 26.05 25.81 32.21 31.74
RMSE 2.60 2.58 3.22 3.17
P-value   <0.05 0.22 <0.05
ResNet 50 MAE 43.69 46.58 44.63 54.35
RMSE 4.37 4.66 4.46 5.43
P-value   <0.05 <0.05 <0.05
VGG 19 MAE 34.26 36.09 34.86 33.08
RMSE 3.43 3.61 3.49 3.31
P-value   <0.05 <0.05 <0.05
Inception V3 MAE 34.54 36.03 34.94 33.29
RMSE 3.45 3.60 3.49 3.33
P-value   0.25 <0.05 <0.05
Xception MAE 32.24 30.13 31.64 34.13
RMSE 3.22 3.01 3.06 3.41
P-value   0.49 0.19 0.05
MAE, mean absolute error; RMSE, root mean square error; CLAHE, contrast limited adaptive histogram equalization; FCE, fuzzy contrast enhancement; HE, histogram equalization; CNN, convolutional neural network; ResNet 50, Residual Network 50; VGG 19, Visual Geometry Group 19.