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Abstract 

Objectives: This study aimed to develop an accurate pediatric bone age prediction model by 

utilizing deep learning models and contrast conversion techniques, in order to improve growth 

assessment and clinical decision-making in clinical practice. 



Methods: The study employed a variety of deep learning models and contrast conversion 

techniques to predict bone age. The training dataset consisted of pediatric left-hand X-ray 

images, each annotated with bone age and sex information. Deep learning models, including a 

convolutional neural network (CNN), ResNet 50, VGG 19, Inception V3, and Xception were 

trained and assessed using the mean absolute error (MAE). For the test data, contrast 

conversion techniques including FCE, CLAHE, and HE were implemented. The quality of the 

images was evaluated using PSNR, MSE, SNR, COV, and CNR metrics. The bone age 

prediction results using the test data were evaluated based on the MAE and root mean square 

error (RMSE), and the t-test was performed. 

Results: The Xception model showed the best performance (MAE=41.12). HE exhibited 

superior image quality, with higher SNR and COV values than other methods. Additionally, 

HE demonstrated the highest contrast among the techniques assessed, with a CNR value of 

1.29. Improvements in bone age prediction resulted in a decline in MAE from 2.11 to 0.24, 

along with a decrease in RMSE from 0.21 to 0.02. 

Conclusion: This study demonstrates that preprocessing the data before model training does 

not significantly affect the performance of bone age prediction when comparing contrast-

converted images with original images.  
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 Introduction 

Background 



Heterogeneity in skeletal maturation is influenced by a complex interplay of factors, 

including genetic predispositions, the nutritional and growth status of the child, the onset of 

precocious puberty, hormonal variations, conditions related to pediatric endocrinology and 

metabolic disorders, and ailments affecting the musculoskeletal system [1-3]. The assessment 

of bone age, especially through methods that examine growth plates, is crucial not only for 

identifying precocious puberty and providing benchmarks for growth trajectories and future 

height predictions but also for managing conditions such as adolescent idiopathic scoliosis and 

determining the appropriate timing for orthopedic interventions in children with skeletal 

anomalies [3-6]. Thus, the appraisal of bone age using standardized methods is paramount for 

diagnosing, managing, and developing effective therapeutic strategies for these conditions. 

Conventional methods for determining bone age in children, such as cervical vertebral 

maturation, the Roche-Wainer-Thissen criterion for knee assessment, and Risser’s sign for 

evaluating the iliac crest apophysis, are supplemented by more commonly used techniques like 

the Greulich and Pyle (GP) and Tanner Whitehouse (TW3) methods, which utilize radiographic 

images of the left hand. The GP method provides a straightforward way to estimate bone age 

by comparing the bony structures of the hand and wrist with a sex-specific collection of images 

that depict various stages of skeletal maturity. However, its accuracy can be compromised in 

cases of significant skeletal deformities, with the range of evaluative intervals in the image 

collection spanning from six months to a year. In contrast, the Tanner-Whitehouse (TW) 

approach assigns grades from A to I to each bone in the targeted area, comparing them to a 

standard dataset and aggregating these maturity scores to predict bone age. While the TW 

method is known for its complexity and precision, offering enhanced reliability, it also requires 

a more substantial time commitment [1, 7]. 

The reliability of both GP and TW assessments depends on the subjective 



interpretation by radiologists, which can lead to variability in outcomes based on the evaluator's 

expertise [2, 6]. This highlights the clinical need for more accurate and time-efficient methods 

for determining bone age. Recent advancements have led to the development of automated 

bone age assessment techniques that utilize AI technology, with commercial AI-based software 

solutions like BoneXpert and VUNO now available for clinical use. These innovations 

represent a significant shift towards more precise and dependable bone age assessment 

protocols. 

Despite these technological advances, challenges remain, particularly in analyzing 

images affected by suboptimal quality or unusual skeletal structures. Furthermore, there is a 

significant lack of discussion concerning the effectiveness of post-processing techniques in 

conventional growth plate analyses.  

Objectives 

This study aims to address these gaps by exploring methods to enhance image contrast, 

thereby improving the accuracy of region of interest (ROI) classification and contributing 

to the advancement of bone age assessment technologies. 

 

  



Methods 

Ethics statement 

This study is based on publicly available, anonymous X-ray image data; therefore, approval 

by the institutional review board and the requirement for informed consent were exempted. 

Study design 

This was a methodological study to predict values in model training for bone age.  

Study procedure 

In this study, we used training and validation data that had been preprocessed and normalized, 

utilizing Light hand X-ray images and comma-separated values (CSV) file-type labels for 

model training. We employed several models, including a convolutional neural network 

(CNN), Residual Network 50 (ResNet 50), Visual Geometry Group (VGG) 19, Inception V3, 

and Xception. To derive the predicted values for the test images, we stored the weight value 

corresponding to the smallest validation loss observed during the model training. The 

resulting values were saved in a CSV file, and we evaluated each model by comparing the 

root mean square error (RMSE) values. 

 

Data sources 

The data used in this study were obtained from the dataset released during the 2017 

RSNA AI Pediatric Bone Age Challenge (Dataset 1), which was created by Stanford University 

and the University of Colorado and annotated by multiple expert observers. This dataset 

includes a total of 126,111 pediatric left-hand X-ray images, each labeled with the subject's sex 

and bone age. The age range of the subjects in these images spans from 1 month to 228 months 



and comprises 6,833 male and 5,778 female subjects. All data feature normalized resolution 

and have not been processed. Additionally, the data were collected in a multi-institutional 

setting, with labeling performed collaboratively by two pediatric radiologists from each 

institution. Table 1 shows specific details regarding the 2017 RSNA AI Pediatric Bone Age 

Challenge dataset. Data generated and/or analyzed during the current study are available in 

Dataset 2. 

 

Preprocessing and augmentation 

For the model training phase, 100,888 images, representing 80% of the total 126,111 

images in the dataset, were used for training. The remaining 20%, or 25,123 images, were set 

aside for validation. The testing procedures utilized a subset of 100 images. Additionally, all 

images were resized to a resolution of 256 × 256 pixels in RGB format, and processing was 

carried out in batches of 32, using a random seed of 42 to ensure consistency. The training 

images underwent augmentation through vertical flipping, a technique used to increase data 

diversity and improve the model's generalization performance. 

 

Training and evaluation  

The Adam optimizer was used as the optimization function, and mean absolute error 

(MAE) served as the evaluation metric. The model underwent 50 epochs, each consisting of 

300 steps, and it was subjected to both training and validation processes. These processes were 

essential for monitoring validation loss to determine the model's optimal performance, which 

was achieved when the loss value was at its minimum. The loss value and MAE from the 

validation phase confirmed the learning verification for each model on a monthly basis. 



The formula for MAE is as follows: 

 
𝑀𝐴𝐸 =  
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(1) 

𝑛 is the number of samples or data points, 𝑦𝑖 represents the actual or observed value, and 

𝑦𝑖
′ represents the predicted value. 

The comparison of performance evaluations across models was shown as the 

distribution of differences between the labeled age and the predicted age.  

 

Image contrast conversion and quantitative analysis 

Contrast conversion procedures were conducted on 100 test datasets. Three distinct 

algorithms were employed for contrast adjustment: fuzzy contrast enhancement (FCE), 

histogram equalization (HE), and contrast limited adaptive histogram equalization (CLAHE). 

The FCE algorithm enhances image contrast by applying principles of fuzzy logic. This method 

involves fuzzifying the pixel intensities and then defuzzifying the resulting fuzzy set. The 

formal expression for the FCE algorithm is articulated as follows: 

 𝐹𝐶𝐸(𝑥, 𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑) = 𝑒−0.5 × (𝑠𝑡𝑑𝑥 − 𝑚𝑒𝑎𝑛) (2) 

The conventional HE technique employs histogram equalization to enhance contrast. 

This algorithm involves calculating the histogram of the input image, followed by deriving the 

cumulative distribution function. Afterward, histogram normalization is performed, and the 

cumulative distribution function is used to adjust the pixel values in the image. 

Conversely, the CLAHE algorithm utilizes a contrast-constrained adaptive histogram 

equalization approach to enhance image contrast. This method divides the image into discrete, 

small blocks, applying histogram equalization independently to each one. Contrast constraints 



are applied to improve the contrast within each image segment. Subsequently, all blocks are 

combined to produce the final image. 

To assess the image quality of the contrast-transformed image, we analyzed several 

metrics, including the peak signal-to-noise ratio (PSNR), mean squared error (MSE), signal-

to-noise ratio (SNR), coefficient of variation (COV), and contrast-to-noise ratio (CNR). The 

formulas for each metric are as follows. 

 
𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(

𝑀𝑝
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(3) 

𝑀𝑝 is the maximum possible pixel value, and MSE is the mean squared error between the 

original and distorted images. 
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𝐴 and 𝐵 are the dimensions of the image. 𝐼(𝑖, 𝑗) and 𝐾(𝑖, 𝑗) are the pixel intensities of the 

original and distorted images, respectively. 

 
𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(

𝑆𝑃

𝑁𝑃
) 

(5) 

SP represents the strength of the desired information in the image. NP represents the level of 

unwanted background noise in the image. 

 
𝐶𝑂𝑉 = 100 ×

𝑆𝐷

𝑀
 

(6) 

M represents the average contrast level in the image. The standard deviation (SD) denotes the 

variability or dispersion of noise within the image. 

 
𝐶𝑁𝑅 =

𝑀𝐶

𝑆𝐷
 

(7) 

MC represents the average contrast level in the image. 



 

Image contrast conversion and quantitative analysis  

A comprehensive assessment was conducted using 100 test sets to calculate the MAE 

and RMSE, thereby evaluating the accuracy of bone age estimation for each contrast-converted 

image. MAE was calculated according to Equation 1, and RMSE according to Equation 8. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
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(8) 

𝑛 is the number of samples or data points, 𝑦𝑖 represents the actual or observed value, and 

𝑦𝑖
′ represents the predicted value. 

  

Statistical methods 

The statistical significance of the findings was assessed using the t-test, with the predetermined 

threshold for statistical significance established at p < 0.05. 

  



Results 

Subjects’ characteristics 

The sex distribution of subjects and the monthly age distribution for males and females in this 

study are presented in Fig. 1. 

 

Model performance 

The RMSE values for the predicted bone age relative to the actual age, used as metrics 

to assess model performance in the study, were 50.91 for CNN, 55.29 for ResNet 50, 50.29 for 

VGG 19, 48.74 for Inception V3, and 41.12 for Xception. A graphical representation 

illustrating the outcomes of bone age prediction in relation to chronological age is shown in 

Fig. 2. 

 

X-ray image contrast conversion 

CLAHE, FCE, and HE were individually applied to the test data for model evaluation 

to perform contrast transformation. An example of a contrast-enhanced image is shown in Fig. 

3. 

The quantitative assessment of each image utilized PSNR, MSE, SNR, and CNR (Fig. 

4). In terms of PSNR and MSE values, image quality was ranked from highest to lowest as 

follows: FCE, CLAHE, and HE. Regarding factors evaluating noise and signal intensity in the 

images, SNR and COV exhibited higher values in the order of HE, FCE, and CLAHE. 

Specifically, for HE, SNR and COV were notably higher at 1.83 and 1.31, respectively, 

representing more than a sevenfold and threefold difference compared to other algorithms, 



respectively. In assessing contrast, CNR values were highest for HE, followed in descending 

order by FCE and CLAHE, with HE demonstrating the highest contrast at 1.29.  

 

Bone age prediction 

A total of 100 original and contrast-enhanced images were used as test data for bone 

age prediction in each model. Table 2 presents the MAE, RMSE, and p-value of the bone age 

prediction results across various models and contrast conversion algorithms. To facilitate 

comparison of bone age prediction performance using each contrast algorithm, evaluation 

results for the original images were also included. The accuracy of bone age prediction has 

improved, with statistically significant enhancements observed when using CLAHE in the 

CNN model, HE in the Inception V3 model, and HE in the VGG 19 model. In the Xception 

model, although the application of CLAHE and FCE algorithms led to better accuracy in bone 

age prediction, the improvements were not statistically significant. 

Improvements in bone age prediction led to a reduction in MAE from 2.11 to 0.24 and 

a decrease in RMSE from 0.21 to 0.02.  

 

  



Discussion 

  

Key results 

In this study, we implemented various bone age prediction models using identical 

parameters and evaluated the results by modifying the contrast of the test data. The Xception 

model demonstrated the most accurate bone age predictions. After adjusting the contrast, the 

PSNR and MSE metrics revealed that the FCE algorithm delivered the highest quality results. 

Furthermore, the quantitative assessments of SNR, COV, and CNR indicated that the HE 

algorithm produced the highest values. The prediction of bone age with contrast-adjusted 

images showed improved performance in 5 out of 15 cases compared to the original images. 

However, two of these five cases did not achieve statistical significance. 

Interpretation 

The primary cause of these outcomes was linked to the use of unprocessed images in 

the training dataset. The original images, obtained from various institutions, showed variations 

in how much of the left hand was captured, with some images featuring the left hand in non-

horizontal positions. Although training the model with diverse datasets might enhance its 

applicability across different institutions, it could also negatively affect the model's 

performance. Future efforts will focus on acquiring preprocessed training data, which will 

involve adjusting the image contrast and ensuring that each image is horizontally aligned at the 

wrist bone through image registration. Additionally, in this study, the training and validation 

sets were separated in only one instance for individual model training. Future plans include the 

use of k-fold learning during model training to facilitate integrated learning and validation 

across the entire dataset. 

Racial and ethnic disparities, along with variations in nutritional status and overall 

health, may affect bone age measurements. This suggests that applying bone age criteria 



directly to contemporary children and adolescents may not be appropriate [8]. Previous studies 

have developed deep learning-based bone age prediction models specifically optimized for 

Korean children and adolescents. These models use hand and wrist radiographs and have been 

evaluated for their validity compared to conventional methods [9].  

This study demonstrated that the deep learning-based Korean model achieved superior 

bone age prediction accuracy compared to conventional methods, marking a significant 

advancement in precise growth assessment and clinical decision-making. The Korean bone age 

model reduces prediction biases and delivers more accurate age predictions across different 

age groups. Therefore, it is imperative to develop bone age prediction models that are 

customized for various racial groups.  

 

Limitations 

This study does not have any limitations that warrant discussion. 

 

Suggestion for further studies 

Future research directions include preprocessing training data to ensure consistency in 

image quality and registration, implementing k-fold training to enhance model robustness, and 

fine-tuning models using datasets specific to Korean populations. These endeavors aim to 

enhance the overall accuracy and applicability of bone age prediction models in clinical 

practice, ultimately improving growth assessment and clinical decision-making for pediatric 

patients. 

Conclusion 

This study shows that when model learning is performed using non-preprocessed data, 



there is no significant difference in bone age prediction performance between contrast-

converted images and original images. Rather than applying post-processing to the test dataset 

to improve predictions, it will be necessary to preprocess the training dataset. 
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Table  

Table 1. Description of the 2017 RSNA pediatric bone age challenge dataset. 

Items Description 

Imaging modality 

X-ray 

Preferred name: digital radiography 

RadLex ID: RID10351 

Annotation pattern Whole study label 

Annotation methodology and structure 

Method of annotation  

- Manual  

Annotation output  

- Spreadsheet (alphanumeric)  

Storage, Portability, Interoperability  

- Downloadable ZIP file (RSNA website) 

Imaging file/structure set format Portable Network Graphic (PNG) 

Image characteristics 

Resolution 

- Normalized 

Preprocessing 

- None 

Labeler demographics 

Scope of annotation: multi-institutional 

- Two pediatric radiologists from each institution 

Clinical report 

 

  



Table 2. MAE, RMSE, and t-test results for each model, comparing the actual bone age to the 

predicted bone age for both the original images and the images subjected to the contrast 

conversion algorithm. 

Model Items Original 
Image contrast conversion methods 

CLAHE FCE HE 

CNN 

MAE 26.05 25.81 32.21 31.74 

RMSE 2.60 2.58 3.22 3.17 

P-value   <0.05 0.22 <0.05 

ResNet 50 

MAE 43.69 46.58 44.63 54.35 

RMSE 4.37 4.66 4.46 5.43 

P-value   <0.05 <0.05 <0.05 

VGG 19 

MAE 34.26 36.09 34.86 33.08 

RMSE 3.43 3.61 3.49 3.31 

P-value   <0.05 <0.05 <0.05 

Inception V3 

MAE 34.54 36.03 34.94 33.29 

RMSE 3.45 3.60 3.49 3.33 

P-value   0.25 <0.05 <0.05 

Xception 

MAE 32.24 30.13 31.64 34.13 

RMSE 3.22 3.01 3.06 3.41 

P-value   0.49 0.19 0.05 

MAE, mean absolute error; RMSE, root mean square error; CNN, convolutional neural 

network; CLAHE, contrast limited adaptive histogram equalization; FCE, fuzzy contrast 

enhancement; HE, histogram equalization. 

 

  



Figures Legends 

Fig. 1. Histograms depicting (a) the sex distribution and (b) the monthly age distribution for 

males and females. 

Fig. 2. Comparison of bone age and model predictions. (a) CNN, (b) ResNet 50 (c) VGG 19 

(d) Inception V3 and (e) Xception. The blue line represents the actual bone age, while the red 

dot represents the predicted result. 

Fig. 3. The original left-hand X-ray image and the image after applying each contrast 

conversion algorithm: (a) original image, (b) FCE algorithm applied, (c) HE algorithm applied, 

(d) CLAHE algorithm applied. FCE, fuzzy contrast enhancement; HE, histogram equalization; 

CLAHE, contrast limited adaptive histogram equalization. 

Fig.4. Quantitative analysis results of images obtained using the contrast conversion algorithm. 

(a) PSNR and MSE results; (b) SNR, COV, and CNR results. PSNR, peak signal-to-noise ratio; 

MSE, mean squared error; SNR, signal-to-noise ratio; COV, coefficient of variation; CNR, 

contrast-to-noise ratio. 
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