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Abstract 

Shoulder diseases pose a significant health challenge for older adults, often causing pain, functional 

decline, and decreased independence. This narrative review explores how deep learning (DL) can 

address diagnostic challenges by automating tasks such as image segmentation, disease detection, and 

motion analysis. Recent research highlights the effectiveness of DL-based convolutional neural 

networks (CNNs) and machine learning frameworks in diagnosing various shoulder pathologies. 

Automated image analysis facilitates the accurate assessment of rotator cuff tear size, muscle 

degeneration, and fatty infiltration in magnetic resonance imaging or computed tomography scans, 

frequently matching or surpassing the accuracy of human experts. CNN-based systems are also adept 

at classifying fractures and joint conditions, enabling the rapid identification of common causes of 

shoulder pain from plain radiographs. Furthermore, advanced techniques like pose estimation provide 

precise measurements of the shoulder joint's range of motion and support personalized rehabilitation 

plans. These automated approaches have also been successful in quantifying local osteoporosis, 

utilizing machine learning-derived indices to classify bone density status. DL has demonstrated 

significant potential to improve diagnostic accuracy, efficiency, and consistency in the management of 
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shoulder diseases in older patients. Machine learning-based assessments of imaging data and motion 

parameters can help clinicians optimize treatment plans and improve patient outcomes. However, to 

ensure their generalizability, reproducibility, and effective integration into routine clinical workflows, 

large-scale, prospective validation studies are necessary. As data availability and computational 

resources increase, the ongoing development of DL-driven applications is expected to further advance 

and personalize musculoskeletal care, benefiting both healthcare providers and the aging population. 
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Introduction 

Background 

Shoulder diseases pose a significant health burden on the aging population, affecting millions of 

individuals worldwide [1-3]. Common conditions such as rotator cuff tears, impingement syndrome, 

osteoarthritis, and adhesive capsulitis not only cause pain but also significantly impair the daily lives of 

patients by restricting their mobility and independence [1,4-8]. Timely and accurate diagnosis of these 

conditions is crucial for optimizing treatment outcomes and enhancing patient quality of life. 

However, traditional diagnostic tools, such as X-rays, magnetic resonance imaging (MRI), and 

ultrasound, face challenges including variability in interpretation and limited availability in resource-

constrained environments [9]. Furthermore, these methods struggle to accurately and objectively 

measure joint range of motion, which further compromises their effectiveness in diagnosing 

musculoskeletal conditions [10]. 

Recent advances in artificial intelligence (AI), especially in the area of deep learning (DL), have 

revolutionized the diagnosis of shoulder diseases [11-14]. DL algorithms leverage artificial neural 

networks, modeled after the human brain, to process and analyze vast amounts of data with 

exceptional accuracy [15]. These algorithms can detect subtle patterns in medical images that may be 

overlooked by even experienced radiologists. They also analyze complex movements and postures 

through pose estimation techniques. By minimizing diagnostic errors, improving consistency, and 

facilitating detailed motion analysis, DL algorithms are widely applicable in imaging and movement 



 

 

assessment, transforming sectors like healthcare, rehabilitation, and biomechanics. 

Objectives 

This paper aims to explore recent studies on the application of DL in diagnosing shoulder diseases in 

older adults. 

 

Ethics statement 

As this study is a literature review, it did not require institutional review board approval or in

dividual consent. 

 

The analysis of rotator cuff muscles/tendons and fatty infiltrations using AI 

In 2020, Taghizadeh et al. introduced an AI model specifically designed to automatically assess 

rotator cuff muscle degeneration by analyzing both atrophy and fatty infiltration in computed 

tomography (CT) images [14]. This model utilized a convolutional neural network (CNN) to 

automatically evaluate degeneration, including atrophy and fatty infiltration, in preoperative shoulder 

CT scans of patients with glenohumeral osteoarthritis. The CNN was tested on retrospective data 

from 103 CT scans and achieved Dice similarity coefficients that were comparable to those of manual 

radiologist segmentations. It demonstrated high accuracy in measuring atrophy (R² = 0.87), fatty 

infiltration (R² = 0.91), and overall degeneration (R² = 0.91). These findings highlight the potential of 

DL to provide efficient and reliable evaluations of rotator cuff muscles preoperatively. 

Similarly, Ro et al. developed a DL framework that utilizes MRI to evaluate factors such as the 

occupation ratio and fatty infiltration in the supraspinatus muscle of patients with rotator cuff 

tears [12]. This study employed a deep-learning framework to analyze the occupation ratio and fatty 

infiltration in the supraspinatus muscle using shoulder MRI. A full CNN facilitated rapid and precise 

segmentation of the supraspinatus muscle and fossa, achieving high Dice similarity coefficients (0.97 

for the fossa and 0.94 for the muscle) along with excellent sensitivity and specificity. Fatty infiltration 

was quantified using a region-based Otsu thresholding method, which revealed significant differences 

across Goutallier grades (p < 0.0001) [16] and demonstrated a moderate negative correlation with the 



 

 

occupation ratio (ρ = −0.75, p < 0.0001) [17]. These findings indicate that integrating DL with 

automated thresholding techniques offers an objective and efficient means of quantifying key indices 

in shoulder MRI, thereby enhancing diagnostic accuracy and consistency. 

 

Detection of shoulder pathologies including rotator cuff tears and fractures 

Recently, DL technology has been employed to automate the segmentation and detection of rotator 

cuff tears using MRI. 

Lee et al. developed a DL model utilizing a 3D U-Net CNN to detect, segment, and visualize rotator 

cuff tear lesions in three dimensions using MRI data from 303 patients [18]. The model, trained and 

validated on labeled MRI datasets, demonstrated robust performance. It achieved a Dice coefficient of 

94.3%, a sensitivity of 97.1%, a specificity of 95.0%, a precision of 84.9%, an F1-score of 90.5%, and a 

Youden index of 91.8% (Figure 1).  

 

Fig. 1. Segmentation results corresponding to the rotator cuff tear site. (A) Original MRI images 

displaying the presence of a rotator cuff tear. (B) The red region represents the area manually labeled 

by shoulder specialists, while the blue region indicates the area segmented by the proposed deep 

learning model. This figure has been used with the author's permission [18]. 



 

 

 

Hashimoto et al. assessed the diagnostic capabilities of a CNN in detecting and classifying rotator 

cuff tears, using 1,169 anteroposterior shoulder radiographs. These were categorized into four groups: 

intact, small, medium, and large-to-massive tears [19]. In binary classification tasks, the CNN achieved 

a sensitivity of 92%, a specificity of 69%, an accuracy of 86%, and an area under the receiver operating 

curve (AUC) of 0.88. The CNN outperformed orthopedic surgeons in both detection and 

classification accuracy, demonstrating its potential as a reliable tool for diagnosing rotator cuff tears 

from plain radiographs. 

A recent meta-analysis demonstrated that AI could perform comparably to clinicians in detecting 

fractures, highlighting its potential for broader applications in orthopedics. Magneli et al. developed 

and evaluated a CNN for classifying fractures in shoulder radiographs, focusing on proximal humeral 

fractures (PHF) based on the AO/OTA classification system, with secondary objectives for diaphyseal 

humerus, clavicle, and scapula fractures [20]. The CNN, trained on a dataset of 6,172 examinations, 

achieved an overall AUC of 0.89 for fracture classification. Notably, the AUC for PHF classes 

exceeded 0.90. The model also demonstrated excellent AUCs for diaphyseal humerus (0.97) and 

clavicle fractures (0.96), and a good performance for scapula fractures (0.87). Furthermore, Grauhan et 

al. developed a model capable of identifying a variety of common causes of shoulder pain on 

radiographs, extending beyond fractures to include conditions such as proximal humeral fractures, 

dislocations, periarticular calcifications, osteoarthritis, osteosynthesis, and joint prostheses [11]. This 

study utilized the ResNet-50 architecture to detect common causes of shoulder pain—such as 

fractures, dislocations, osteoarthritis, periarticular calcifications, osteosynthesis, and endoprosthesis—

from plain radiographs. Trained on 2,700 radiographs and evaluated on a separate annotated dataset, 

the model demonstrated high accuracy. The CNN achieved excellent performance, with AUC values 

of 0.871 for fractures, 0.896 for joint dislocations, 0.945 for osteoarthritis, and 0.800 for periarticular 

calcifications. It also detected osteosynthesis and endoprosthesis with high accuracy, achieving AUC 

values of 0.998 and 1.0, respectively. Sensitivity and specificity varied by condition, with values of 0.75 

and 0.86 for fractures, 0.95 and 0.65 for joint dislocations, 0.90 and 0.86 for osteoarthritis, and 0.60 

and 0.89 for calcifications. These results underscore the potential of CNNs to aid clinicians by 



 

 

prioritizing worklists and improving diagnostic efficiency in high-workload settings. 

 

Detection of local osteoporosis in the proximal humerus 

Li et al. developed a diagnostic method using machine learning to assess local osteoporosis in the 

proximal humerus by analyzing demographic data, bone density, and X-ray ratios. The study involved 

a cohort of 97 patients (76 females and 21 males with an average age of 73 years), categorized into 

groups based on bone density: normal (25 patients), osteopenia (35 patients), and osteoporosis (37 

patients). Utilizing the modified Tingart index [21], a decision tree was employed to identify critical 

diagnostic indicators, including the humeral shaft medullary cavity ratio (M2/M4), age, and sex. An 

M2/M4 ratio below 1.13 was indicative of local osteoporosis, whereas a ratio of 1.13 or higher, when 

analyzed alongside age and sex, helped differentiate between osteoporosis, osteopenia, and normal 

bone density. The decision tree achieved accuracies of 76.27% in the training set and 78.95% in the 

validation set. Additionally, multinomial logistic regression validated significant associations of 

M2/M4, age, and sex with osteoporosis.  

 

Fig. 2. The Grad-CAM visualization [22] shows which regions the AI focused on when analyzing the 

bone mineral density of the shoulder.  

 



 

 

Analysis of shoulder range of motion using machine learning  

Measuring shoulder joint angles accurately has been challenging due to the complexity of shoulder 

motion and its intricate rotational axes. Recently, pose estimation, a computer vision technique that 

utilizes machine learning, has garnered significant attention [23,24]. This technology predicts the 

positions and orientations of human joints or key points from images or videos, enabling detailed 

analysis of movements and postures [25]. In a recent study, the integration of pose estimation AI with 

machine learning has demonstrated a promising approach to estimating the range of motion of the 

shoulder with remarkable precision, paving the way for advancements in sports biomechanics and 

rehabilitation. 

 

Fig. 3. A company utilizes machine learning-based pose estimation technology to measure a patient's 

range of motion, analyze the patient's current condition based on the results, and assign the most 

suitable rehabilitation exercises. This figure is used with permission from Itphy, Inc. 

 

Takigami et al. employed pose estimation AI in conjunction with a machine learning model to 

estimate the internal and external rotation angles of the shoulder [26]. They processed videos of 10 

healthy male volunteers (average age 37.7 years) into 10,608 images to develop parameters for training 

the model. Using smartphone angle measurements as the ground truth, the AI model demonstrated a 

correlation coefficient of 0.971 and a mean absolute error (MAE) of 5.778 using linear regression. 

With Light GBM, it achieved a correlation coefficient of 0.999 and an MAE of 0.945. This method 

offers a precise and efficient way to measure shoulder rotation angles, showing great potential for 

applications in sports biomechanics and rehabilitation. 

Ramkumar et al. validated a motion-based machine learning software development kit (SDK) 

designed to assess shoulder range of motion. They compared its accuracy with that of manual 



 

 

goniometer measurements across four motion arcs: abduction, forward flexion, internal rotation, and 

external rotation [27]. Utilizing a mobile application, 10 subjects each performed the motions five 

times. The SDK recorded mean angular differences of less than 5° for all motions (p > 0.05), with 

specific mean differences of -3.7° for abduction, -4.9° for forward flexion, -2.4° for internal rotation, 

and -2.6° for external rotation.  

 

Conclusion 

The use of DL in diagnosing shoulder diseases among older patients has shown considerable promise 

in several areas. These include analyzing rotator cuff muscle degeneration, detecting pathologies such 

as rotator cuff tears and fractures, evaluating local osteoporosis in the proximal humerus, and 

accurately measuring the shoulder's range of motion. DL models, which employ sophisticated 

architectures like CNNs and incorporate machine learning algorithms, consistently achieve high levels 

of accuracy, sensitivity, and specificity in medical imaging tasks. These models often outperform 

traditional diagnostic techniques and expert clinicians. 
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