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Introduction

Background/rationale
Hair loss, especially androgenetic alopecia (AGA), is a com-

mon dermatological condition that has a considerable impact on 
patients’ quality of life. Early detection is essential, both for initiat-
ing timely treatment and for preventing further progression 
during the subtle and potentially reversible stages of the disease 
[1]. In clinical settings, the Basic and Specific (BASP) classifica-
tion system is widely used to assess the severity of hair loss, sys-
tematically categorizing frontal and vertex scalp patterns into 
structured scores [2]. However, BASP scoring is based on manual 

visual assessment, which introduces subjectivity and variability 
between observers.

To overcome these limitations, deep learning–based approach-
es have increasingly been explored in dermatology, providing au-
tomated and objective tools for image-based diagnosis [3]. Con-
volutional neural networks (CNNs), in particular, have shown 
strong performance in medical imaging tasks [4], including 
trichoscopic image analysis [5]. Building on this foundation, our 
study aimed to develop and validate a deep learning–based classi-
fication model capable of distinguishing BASP 0 (no hair loss) 
from BASP 1–3 (early-stage hair loss) directly from scalp images, 
with the goal of improving diagnostic reproducibility and stan-

Purpose: This study developed and validated a deep learning model for the automated early detection of androgenetic alopecia (AGA) using trichoscopic 
images, and evaluated the model’s diagnostic performance in a Korean clinical cohort.
Methods: We conducted a retrospective observational study using 318 trichoscopic scalp images labeled by board-certified dermatologists according to the 
Basic and Specific (BASP) system, collected at Ewha Womans University Medical Center between July 2018 and January 2024. The images were categorized 
as BASP 0 (no hair loss) or BASP 1–3 (early-stage hair loss). A ResNet-18 convolutional neural network, pretrained on ImageNet, was fine-tuned for binary 
classification. Internal validation was performed using stratified 5-fold cross-validation, and external validation was conducted through ensemble soft voting 
on a separate hold-out test set of 20 images. Model performance was measured by accuracy, precision, recall, F1-score, and area under the curve (AUC), with 
95% confidence intervals (CIs) calculated for hold-out accuracy.
Results: Internal validation revealed robust model performance, with 4 out of 5 folds achieving an accuracy above 0.90 and an AUC above 0.93. In external 
validation on the hold-out test set, the ensemble model achieved an accuracy of 0.90 (95% CI, 0.77–1.03) and an AUC of 0.97, with perfect recall for ear-
ly-stage hair loss. No missing data were present, and the model demonstrated stable convergence without requiring data augmentation.
Conclusion: This model demonstrated high accuracy and generalizability for detecting early-stage AGA from trichoscopic images, supporting its potential 
utility as a screening tool in clinical and teledermatology settings.
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dardization.
This study was specifically designed to address common chal-

lenges in medical image analysis, such as small dataset size and 
class imbalance. To evaluate model performance, we employed a 
2-tier experimental strategy. First, we performed internal valida-
tion using stratified 5-fold cross-validation across the entire data-
set to assess training stability and to identify optimal training con-
figurations [6]. Next, informed by these findings, we conducted 
external validation with a hold-out test set using ensemble voting, 
thereby simulating real-world application on previously unseen 
images [7]. This sequential approach allowed us to evaluate both 
model training dynamics and real-world generalizability.

To support these experiments, we redefined BASP labels into 
binary categories (BASP 0 vs. BASP 1–3), implemented class-pre-
serving validation through stratified sampling, and selected Res-
Net-18, a lightweight yet effective CNN architecture known for 
its balance of performance and computational efficiency in small- 
to medium-sized datasets.

Objectives
The aim of this study was to evaluate the model’s diagnostic ac-

curacy, generalizability, and clinical utility using both internal 
cross-validation and external hold-out testing, providing evidence 
for its potential application in dermatological screening. Addition-
ally, we sought to address class imbalance through stratified sam-
pling, to assess the feasibility of binary BASP classification, and to 
demonstrate the use of a ResNet-18 CNN for the automated as-
sessment of early-stage AGA.

Methods

Ethics statement
This study was approved by the Institutional Review Board 

(IRB) of Ewha Womans University Medical Center (IRB no., 
EUMC 2025-01-037). The requirement for informed consent 
was waived due to the retrospective nature of the study and the 
use of de-identified image data.

Study design
This was a retrospective observational study aimed at develop-

ing a deep learning model for classifying hair loss severity based 
on the BASP system.

Settings
A total of 318 trichoscopic images were collected from patients 

visiting the Department of Dermatology at Ewha Womans Uni-
versity Medical Center (Seoul, Republic of Korea) between July 7, 

2018, and January 31, 2024. All images were acquired using the 
DermLite DL Cam Photo dermoscopy system (3Gen Inc.) and 
were captured from the frontal and vertex scalp regions during 
routine clinical assessments. Images of the occipital region, 
though used by dermatologists for clinical comparison during 
BASP scoring, were excluded from both model training and eval-
uation.

Participants
Eligible participants included patients aged 15 to 84 years who 

presented with concerns regarding hair loss. No additional inclu-
sion or exclusion criteria were applied beyond clinical presenta-
tion, and all trichoscopic images with valid BASP annotations 
were included in the study. Labeling was performed by board-cer-
tified dermatologists using the BASP classification system, result-
ing in 151 images labeled as BASP 0 and 167 images labeled as 
BASP 1, 2, or 3 (Table 1). There were no missing data in the final 
dataset used for model development and evaluation.

Variables
The primary outcome variable was binary classification of hair 

loss severity, defined as class 0 for BASP 0 and class 1 for BASP 
1–3. This binary categorization was derived from the original 
4-class BASP labels (BASP 0, 1, 2, and 3), which were assigned by 
dermatologists.

Image preprocessing and model configuration
Each trichoscopic image was paired with its corresponding 

BASP score using a consistent filename-label mapping system, 
enabling the model to learn the association between image fea-
tures and hair loss severity. Images were resized to 224 × 224 pix-
els and normalized to a mean of 0.5 and standard deviation of 0.5 
for each RGB channel.

A ResNet-18 CNN pretrained on ImageNet was used as the 
backbone. The final fully connected layer was replaced with a 
2-unit output layer for binary classification. Model training was 
performed using the Adam optimizer (learning rate = 0.001), a 
batch size of 128, and the cross-entropy loss function. No data 
augmentation or early stopping strategies were used. Each model 
was trained for a fixed 100 epochs.

Table 1. Distribution of original data 

BASP label 0 1 2 3 Total
No. of images 151 109 47 11 318

BASP, Basic and Specific.
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Validation test

Internal validation: Stratified 5-fold cross-validation
The entire dataset (n = 318) underwent stratified 5-fold 

cross-validation to ensure class balance within each fold. In every 
fold, 80% of the data were used for training and 20% for evalua-
tion. The model with the highest validation accuracy over the 100 
epochs was selected for reporting performance.

External validation: Hold-out ensemble testing
To evaluate generalizability, a hold-out test set of 20 images was 

created by randomly sampling 10 images from BASP 0 and 10 
from BASP 1–3, ensuring class balance. The BASP 1–3 subset 
consisted of 4 BASP 1, 3 BASP 2, and 3 BASP 3 images, reflecting 
the distribution of hair loss stages (Table 2). These 20 images 
were completely excluded from model training and validation 
processes.

Model training and prediction
The remaining 298 images were used to train 5 ResNet-18 mod-

els via stratified 5-fold cross-validation. Each model was then ap-
plied to the hold-out set. Final predictions were determined by en-
semble soft voting, where the average class probabilities from the 5 
models were combined to determine the predicted label. This en-
semble approach was intended to simulate a real-world diagnostic 
scenario and enhance robustness in performance estimation.

Bias mitigation strategies
To address potential sources of bias in this small and imbal-

anced dataset, stratified k-fold cross-validation was used to ensure 
that all original samples were included in both training and valida-
tion while maintaining class distribution across folds. This ap-
proach mitigated selection bias and maximized data utility. Data 
augmentation was intentionally excluded to avoid introducing ar-
tificial variability. Additionally, ensemble prediction via soft voting 
across 5-fold-specific models was used in the hold-out test phase 
to reduce model variance and improve generalizability.

Study size
In total, 318 images were analyzed. No a priori sample size cal-

culation was performed; instead, all eligible labeled images from 
the institutional database were used to reflect real-world clinical 
data availability. Post hoc 95% confidence intervals (CIs) were 
calculated for model accuracy in the hold-out set, based on the 
primary endpoint of binary classification performance.

Evaluation metrics
Performance on the hold-out set was assessed using ensemble 

accuracy, confusion matrix, receiver operating characteristic 
(ROC) curve analysis, area under the curve (AUC), and the 95% 
CI for accuracy. Classification metrics included accuracy, preci-
sion, recall, F1-score, and AUC. For the hold-out evaluation, a 
95% CI for accuracy was computed using the Wald method.

Statistical methods
All statistical analyses and model training were performed using 

Python ver. 3.9 (https://www.python.org/) and PyTorch ver. 1.12 
(Meta) in the Google Colab environment. Image preprocessing, 
model definition, training, and evaluation were implemented us-
ing in-house PyTorch-based scripts. Visualization of results, in-
cluding ROC curves and confusion matrices, was conducted us-
ing Matplotlib ver. 3.7 (Hunter). No statistical hypothesis testing 
(such as P-values) was conducted, as the focus was on classifica-
tion performance and generalizability rather than group compari-
sons. Python code is available in Supplement 1.

Results

Participants
A total of 318 trichoscopic scalp images were included for bina-

ry classification. Of these, 159 images were labeled as BASP 0 (no 
hair loss, class 0) and 159 images were labeled as BASP 1, 2, or 3 
(early hair loss, class 1). No data were excluded, and all labeled 
images were used in both model training and evaluation.

Internal validation: stratified 5-fold cross-validation
The complete dataset (n = 318) was used in stratified 5-fold 

cross-validation, ensuring equal class distribution within each 
fold. Each fold was trained for 100 epochs, with the model achiev-
ing the highest validation accuracy selected. The best epoch and 
corresponding performance metrics—accuracy, precision, recall, 
F1-score, and AUC—are summarized in Table 3.

The model demonstrated stable performance across most folds, 
with 4 out of 5 achieving accuracy above 0.90 and AUC values 
above 0.93. One fold (Fold 5) showed relatively lower perfor-
mance but still maintained an AUC of 0.8202. Detailed training 
curves for each fold are shown in Fig. 1, illustrating how both ac-

Table 2. Dataset configuration for hold-out ensemble voting 
test 

Class 0 Class 1
BASP label 0 1 2 3
Hold-out test set 10 4 3 3

BASP, Basic and Specific.

https://www.python.org/
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Table 3. Fold-wise metrics for stratified 5-fold cross-validation 

Fold Best epoch Accuracy Precision Recall F1-score AUC
1 100 0.9375 0.9677 0.9091 0.9375 0.9423
2 17 0.8906 0.8462 0.9706 0.9041 0.9353
3 4 0.9219 0.9143 0.9412 0.9275 0.9618
4 33 0.9206 0.9375 0.9091 0.9231 0.9707
5 31 0.7460 0.7429 0.7879 0.7647 0.8202

All performance metrics were rounded to 4 decimal places.
AUC, area under the curve.

Fig. 1. (A–J) Epoch-wise accuracy and area under the receiver operating characteristic curve (AUC) for each fold.
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curacy and AUC progressed and converged over the 100 epochs. 
The average epoch time per fold ranged from 8.3 to 8.6 seconds, 
confirming the computational efficiency of ResNet-18 in this 
small- to medium-scale medical imaging task.

External validation: hold-out test with ensemble voting
To assess generalizability, a separate hold-out test set of 20 im-

ages was created. The hold-out set included 10 class 0 and 10 class 
1 images, selected via stratified sampling for balanced class repre-
sentation. Detailed sample composition and individual model 
predictions are provided in Supplement 2. These samples were 

Fold 1: epoch accuracy

Fold 3: epoch accuracy

Fold 5: epoch accuracy

Fold 2: epoch accuracy

Fold 4: epoch accuracy

Fold 1: epoch AUC

Fold 3: epoch AUC

Fold 5: epoch AUC

Fold 2: epoch AUC

Fold 4: epoch AUC
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excluded from training and reserved solely for external validation. 
The remaining 298 images were used to train 5 ResNet-18 mod-
els using stratified 5-fold cross-validation. The best-performing 
model for each fold was selected based on the highest classifica-
tion accuracy on the respective test fold. These models, trained on 
the reduced dataset, demonstrated consistently high performance: 
all folds achieved accuracy above 0.80 and AUC above 0.86, with 
1 fold reaching 0.95 in both metrics (Table 4). These results indi-
cate stable and effective training despite the reduced sample size. 
Detailed fold-wise metrics are presented below, and training 

curves are shown in Fig. 2.
Each of the 5 models was then used to independently predict 

the 20-image hold-out test set. Final ensemble predictions were 
made using soft voting, averaging the predicted probabilities for 
each class across the 5 models. The ensemble model correctly 
classified 18 out of 20 images, achieving an accuracy of 0.9000. 
Notably, all 10 class 1 images were correctly identified, resulting in 
perfect recall for early hair loss detection. Two class 0 images were 
misclassified as class 1. The ROC curve showed an AUC of 0.970, 
and the 95% CI for accuracy, calculated using the Wald method, 

Table 4. Fold-wise metrics from training on the 298-image dataset 

Fold Best epoch Accuracy Precision Recall F1-score AUC
1 11 0.8333 0.8621 0.8065 0.8333 0.8788
2 14 0.8000 0.7632 0.9063 0.8286 0.8650
3 23 0.9500 0.9143 1.0000 0.9552 0.9542
4 22 0.8475 0.8929 0.8065 0.8475 0.9182
5 23 0.8644 0.8966 0.8387 0.8667 0.9389

AUC, area under the curve.

Fig. 2. (A–J) Epoch-wise accuracy and area under the receiver operating characteristic curve (AUC) for each fold trained on 298 
images.
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was 0.768 to 1.032.
The confusion matrix and ROC curve illustrating ensemble 

performance are presented in Fig. 3. Detailed predictions for each 
of the 20 hold-out images, including model-specific votes and en-
semble results, are provided in Supplement 3.

Discussion

Key results
This study developed a ResNet-18-based deep learning model 

for classifying trichoscopic images by early-stage AGA severity us-
ing the BASP system. The model consistently demonstrated high 
performance in internal validation via stratified 5-fold cross-vali-
dation and maintained robust generalizability in external ensem-
ble testing. High accuracy and AUC values in both validation set-
tings confirmed the model’s reliable discrimination between 
BASP 0 and BASP 1–3, even on previously unseen data.

Interpretation
The goal of this study was to assess the feasibility of deep learn-

ing for early-stage hair loss screening based on the BASP classifi-
cation. The model showed consistently high performance across 
stratified internal folds, reflecting its ability to learn relevant pat-
terns from trichoscopic images despite the limited data. Notably, 
4 out of 5 internal folds achieved strong accuracy and AUC scores, 
with only 1 fold showing relatively reduced performance, likely 
due to incidental variation in class composition within that partic-

ular split. Nevertheless, this fold still maintained a respectable 
AUC of 0.8202, suggesting overall robustness across validation 
subsets.

This stability may be attributed to the binary simplification of 
BASP labels (BASP 0 vs. BASP 1–3), which reduced class frag-
mentation and enhanced the signal-to-noise ratio during training. 
Stratified 5-fold cross-validation further mitigated bias from class 
imbalance and ensured that every image contributed to both 
training and validation—a critical design choice for small datasets. 
Importantly, data augmentation was deliberately excluded, yet the 
model still exhibited stable convergence across folds (Figs. 1, 2), 
indicating that core patterns were sufficiently learnable from raw 
image features alone.

Performance on the external hold-out test set further validated 
the model’s generalizability. Ensemble soft voting, based on 5 in-
dependently trained models, successfully classified 18 out of 20 
images, achieving 90% accuracy and an AUC of 0.970. All early 
hair loss cases (class 1) were correctly identified, resulting in per-
fect recall. In clinical screening, such a low false-negative rate is 
crucial for timely intervention and minimizing missed diagnoses.

These findings collectively suggest that, with careful design, 
such as label restructuring, stratified sampling, and ensemble eval-
uation, even small, real-world clinical datasets can support the de-
velopment of reliable deep learning models for early-stage disease 
detection. While the external test set was limited to 20 images, the 
ensemble approach helped compensate for this limitation by re-
ducing model variance and strengthening prediction confidence.

Fig. 3. Confusion matrix (A) and receiver operating characteristic (ROC) curve (B) for ensemble predictions on the hold-out set. 
AUC, area under the ROC curve.
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Comparison with previous studies
While previous research has applied CNNs to dermatologic 

imaging, few studies have specifically targeted early-stage AGA or 
integrated BASP classification into model development. Most ex-
isting approaches rely on multiclass classification or segmentation 
tasks, which typically require larger datasets and extensive manual 
labeling.

In contrast, this study demonstrates that clinically meaningful 
classification can be achieved through strategic label simplifica-
tion and robust validation strategies, even with limited data. By 
employing stratified cross-validation and ensemble-based external 
testing, this work addresses a common gap in medical artificial in-
telligence (AI) research: the reliance on internal metrics without 
assessment of generalizability to unseen data.

Limitations
The main limitation of this study is its small sample size 

(n = 318), which may restrict generalizability. In particular, images 
labeled as BASP 2 and 3 were underrepresented, potentially limit-
ing the model’s ability to learn nuanced patterns across progres-
sive hair loss stages. A larger, more diverse dataset would support 
more robust training and enable a more comprehensive evalua-
tion, including an expanded hold-out test set. All images were ob-
tained from a single institution under specific imaging conditions, 
which may not capture the full variability seen in wider clinical 
settings, such as differences in scalp types, lighting, or trichoscop-
ic equipment. Additionally, only one CNN architecture (Res-
Net-18) was evaluated. Comparative assessments across multiple 
architectures or training configurations could provide greater in-
sight into model optimization.

Training hyperparameters, such as batch size and learning rate, 
were not systematically optimized. Although a batch size of 8 was 
initially tested, training did not converge effectively under that 
condition. A batch size of 128 was subsequently adopted based on 
successful convergence and was maintained throughout the study. 
Beyond this adjustment, no systematic exploration or substudy 
was conducted to identify optimal configurations for further im-
proving model performance in this dataset.

Finally, the performance variability observed across cross-vali-
dation folds—most notably in Fold 5—highlights the model’s 
sensitivity to class composition and sampling variation, under-
scoring the challenges of training on limited, imbalanced medical 
datasets.

Generalizability
Despite the limited dataset, ensemble-based hold-out testing 

demonstrated strong generalizability to unseen images. The mod-

el’s high recall for early-stage AGA suggests potential clinical value 
as a screening tool, especially in resource-limited settings such as 
primary care or teledermatology. However, because all data were 
sourced from a single institution using one specific dermoscopy 
device, and all images were from Korean patients, broader gener-
alization across different populations (varying in age, sex, ethnici-
ty, and imaging equipment) will require future validation using 
multicenter, multi-ethnic, and multi-device datasets.

Suggestions for further studies
To build upon these findings and develop a practical diagnostic 

framework for early-stage AGA, several future directions are sug-
gested.

First, multicenter data collection encompassing diverse popula-
tions, imaging devices, and clinical environments is essential to 
enhance generalizability and reduce bias related to demographics 
or equipment. Larger and more balanced datasets would also en-
able finer label granularity—for example, distinguishing BASP 1 
(early) from BASP 2–3 (progressive)—to better reflect the clini-
cal spectrum of hair loss.

Second, comparative evaluation of alternative neural network 
architectures, such as EfficientNet, DenseNet, or vision trans-
formers, should be performed to identify optimal trade-offs 
among diagnostic accuracy, computational efficiency, and deploy-
ment feasibility.

Third, integrating explainability techniques (such as Grad-
CAM) and uncertainty quantification methods (like CIs or Mon-
te Carlo dropout) may improve clinical trust and facilitate hu-
man–AI collaboration. Fairness metrics should also be monitored 
to assess potential bias across age, sex, or ethnicity subgroups.

Finally, real-world implementation studies in primary care or 
teledermatology—including workflow simulations and user feed-
back—will be vital for validating the model’s practical utility and 
educational value in early diagnosis scenarios.

Conclusion
This study demonstrated the feasibility of a deep learning–

based approach for early detection of AGA by leveraging BASP 
score classification. By simplifying the task to a binary distinction 
between non-hair loss (BASP 0) and early hair loss (BASP 1–3), 
the model achieved strong performance in both internal valida-
tion and ensemble-based external testing, without requiring data 
augmentation or extensive hyperparameter tuning. The use of 
stratified cross-validation and ensemble soft voting enabled robust 
learning even with a limited dataset, suggesting practical applica-
bility in clinical screening scenarios. In particular, the high recall 
for early hair loss cases indicates strong potential for timely inter-
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vention. These results support the integration of automated 
BASP-based assessment tools into dermatological workflows, 
promoting more standardized and objective evaluation of hair 
loss in clinical and teledermatology practice.

Furthermore, such deep learning–based systems may reduce 
the burden of manual labeling, minimize subjectivity in early hair 
loss diagnosis, and offer consistent alerts for possible AGA, there-
by improving the accessibility, accuracy, and standardization of 
dermatologic care.
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