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Purpose: This study developed and validated a deep learning model for the automated early detection of androgenetic alopecia (AGA) using trichoscopic
images, and evaluated the model’s diagnostic performance in a Korean clinical cohort.

Methods: We conducted a retrospective observational study using 318 trichoscopic scalp images labeled by board-certified dermatologists according to the
Basic and Specific (BASP) system, collected at Ewha Womans University Medical Center between July 2018 and January 2024. The images were categorized
as BASP 0 (no hair loss) or BASP 1-3 (early-stage hair loss). A ResNet-18 convolutional neural network, pretrained on ImageNet, was fine-tuned for binary
classification. Internal validation was performed using stratified S-fold cross-validation, and external validation was conducted through ensemble soft voting
on a separate hold-out test set of 20 images. Model performance was measured by accuracy; precision, recall, F1-score, and area under the curve (AUC), with
95% confidence intervals (CIs) calculated for hold-out accuracy.

Results: Internal validation revealed robust model performance, with 4 out of S folds achieving an accuracy above 0.90 and an AUC above 0.93. In external
validation on the hold-out test set, the ensemble model achieved an accuracy of 0.90 (95% CI, 0.77-1.03) and an AUC of 0.97, with perfect recall for ear-
ly-stage hair loss. No missing data were present, and the model demonstrated stable convergence without requiring data augmentation.

Conclusion: This model demonstrated high accuracy and generalizability for detecting early-stage AGA from trichoscopic images, supporting its potential

utility as a screening tool in clinical and teledermatology settings.
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Introduction

Background/rationale

Hair loss, especially androgenetic alopecia (AGA), is a com-
mon dermatological condition that has a considerable impact on
patients” quality of life. Early detection is essential, both for initiat-
ing timely treatment and for preventing further progression
during the subtle and potentially reversible stages of the disease
[1]. In clinical settings, the Basic and Specific (BASP) classifica-
tion system is widely used to assess the severity of hair loss, sys-
tematically categorizing frontal and vertex scalp patterns into

structured scores [2]. However, BASP scoring is based on manual
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visual assessment, which introduces subjectivity and variability
between observers.

To overcome these limitations, deep learning-based approach-
es have increasingly been explored in dermatology, providing au-
tomated and objective tools for image-based diagnosis [3]. Con-
volutional neural networks (CNNs), in particular, have shown
strong performance in medical imaging tasks [4], including
trichoscopic image analysis [5]. Building on this foundation, our
study aimed to develop and validate a deep learning—based classi-
fication model capable of distinguishing BASP 0 (no hair loss)
from BASP 1-3 (early-stage hair loss) directly from scalp images,

with the goal of improving diagnostic reproducibility and stan-
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dardization.

This study was specifically designed to address common chal-
lenges in medical image analysis, such as small dataset size and
class imbalance. To evaluate model performance, we employed a
2-tier experimental strategy. First, we performed internal valida-
tion using stratified S-fold cross-validation across the entire data-
set to assess training stability and to identify optimal training con-
figurations [6]. Next, informed by these findings, we conducted
external validation with a hold-out test set using ensemble voting,
thereby simulating real-world application on previously unseen
images [7]. This sequential approach allowed us to evaluate both
model training dynamics and real-world generalizability.

To support these experiments, we redefined BASP labels into
binary categories (BASP 0 vs. BASP 1-3), implemented class-pre-
serving validation through stratified sampling, and selected Res-
Net-18, a lightweight yet effective CNN architecture known for
its balance of performance and computational efficiency in small-

to medium-sized datasets.

Objectives

The aim of this study was to evaluate the model’s diagnostic ac-
curacy, generalizability, and clinical utility using both internal
cross-validation and external hold-out testing, providing evidence
for its potential application in dermatological screening, Addition-
ally, we sought to address class imbalance through stratified sam-
pling, to assess the feasibility of binary BASP classification, and to
demonstrate the use of a ResNet-18 CNN for the automated as-
sessment of early-stage AGA.

Methods

Ethics statement

This study was approved by the Institutional Review Board
(IRB) of Ewha Womans University Medical Center (IRB no.,
EUMC 2025-01-037). The requirement for informed consent
was waived due to the retrospective nature of the study and the

use of de-identified image data.

Study design

This was a retrospective observational study aimed at develop-
ing a deep learning model for classifying hair loss severity based
on the BASP system.

Settings

A total of 318 trichoscopic images were collected from patients
visiting the Department of Dermatology at Ewha Womans Uni-
versity Medical Center (Seoul, Republic of Korea) between July 7,
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2018, and January 31, 2024. All images were acquired using the
DermLite DL Cam Photo dermoscopy system (3Gen Inc.) and
were captured from the frontal and vertex scalp regions during
routine clinical assessments. Images of the occipital region,
though used by dermatologists for clinical comparison during
BASP scoring, were excluded from both model training and eval-

uation.

Participants

Eligible participants included patients aged 15 to 84 years who
presented with concerns regarding hair loss. No additional inclu-
sion or exclusion criteria were applied beyond clinical presenta-
tion, and all trichoscopic images with valid BASP annotations
were included in the study. Labeling was performed by board-cer-
tified dermatologists using the BASP classification system, result-
ing in 151 images labeled as BASP 0 and 167 images labeled as
BASP 1,2, or 3 (Table 1). There were no missing data in the final

dataset used for model development and evaluation.

Variables

The primary outcome variable was binary classification of hair
loss severity, defined as class 0 for BASP 0 and class 1 for BASP
1-3. This binary categorization was derived from the original
4-class BASP labels (BASP 0, 1,2, and 3), which were assigned by

dermatologists.

Image preprocessing and model configuration

Each trichoscopic image was paired with its corresponding
BASP score using a consistent filename-label mapping system,
enabling the model to learn the association between image fea-
tures and hair loss severity. Images were resized to 224 x 224 pix-
els and normalized to a mean of 0.5 and standard deviation of 0.5
for each RGB channel.

A ResNet-18 CNN pretrained on ImageNet was used as the
backbone. The final fully connected layer was replaced with a
2-unit output layer for binary classification. Model training was
performed using the Adam optimizer (learning rate=0.001), a
batch size of 128, and the cross-entropy loss function. No data
augmentation or early stopping strategies were used. Each model

was trained for a fixed 100 epochs.

Table 1. Distribution of original data

BASP label 0 1 2 3 Total
No. of images 151 109 47 " 318
BASP, Basic and Specific.
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Validation test

Internal validation: Stratified S-fold cross-validation

The entire dataset (n=318) underwent stratified 5-fold
cross-validation to ensure class balance within each fold. In every
fold, 80% of the data were used for training and 20% for evalua-
tion. The model with the highest validation accuracy over the 100

epochs was selected for reporting performance.

External validation: Hold-out ensemble testing

To evaluate generalizability, a hold-out test set of 20 images was
created by randomly sampling 10 images from BASP 0 and 10
from BASP 1-3, ensuring class balance. The BASP 1-3 subset
consisted of 4 BASP 1, 3 BASP 2, and 3 BASP 3 images, reflecting
the distribution of hair loss stages (Table 2). These 20 images
were completely excluded from model training and validation

processes.

Model training and prediction

The remaining 298 images were used to train S ResNet-18 mod-
els via stratified 5-fold cross-validation. Each model was then ap-
plied to the hold-out set. Final predictions were determined by en-
semble soft voting, where the average class probabilities from the 5
models were combined to determine the predicted label. This en-
semble approach was intended to simulate a real-world diagnostic

scenario and enhance robustness in performance estimation.

Bias mitigation strategies

To address potential sources of bias in this small and imbal-
anced dataset, stratified k-fold cross-validation was used to ensure
that all original samples were included in both training and valida-
tion while maintaining class distribution across folds. This ap-
proach mitigated selection bias and maximized data utility. Data
augmentation was intentionally excluded to avoid introducing ar-
tificial variability. Additionally, ensemble prediction via soft voting
across S-fold-specific models was used in the hold-out test phase

to reduce model variance and improve generalizability.

Study size
In total, 318 images were analyzed. No a priori sample size cal-

Table 2. Dataset configuration for hold-out ensemble voting
test

Class 0 Class 1
BASP label 0 1 2 3
Hold-out test set 10 4 3 3
BASP, Basic and Specific.
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culation was performed; instead, all eligible labeled images from
the institutional database were used to reflect real-world clinical
data availability. Post hoc 95% confidence intervals (Cls) were
calculated for model accuracy in the hold-out set, based on the

primary endpoint of binary classification performance.

Evaluation metrics

Performance on the hold-out set was assessed using ensemble
accuracy, confusion matrix, receiver operating characteristic
(ROC) curve analysis, area under the curve (AUC), and the 95%
CI for accuracy. Classification metrics included accuracy, preci-
sion, recall, F1-score, and AUC. For the hold-out evaluation, a

95% CI for accuracy was computed using the Wald method.

Statistical methods

All statistical analyses and model training were performed using
Python ver. 3.9 (https://www.python.org/) and PyTorch ver. 1.12
(Meta) in the Google Colab environment. Image preprocessing,
model definition, training, and evaluation were implemented us-
ing in-house PyTorch-based scripts. Visualization of results, in-
cluding ROC curves and confusion matrices, was conducted us-
ing Matplotlib ver. 3.7 (Hunter). No statistical hypothesis testing
(such as P-values) was conducted, as the focus was on classifica-
tion performance and generalizability rather than group compari-

sons. Python code is available in Supplement 1.

Results

Participants

A total of 318 trichoscopic scalp images were included for bina-
ry classification. Of these, 159 images were labeled as BASP 0 (no
hair loss, class 0) and 159 images were labeled as BASP 1, 2, or 3
(early hair loss, class 1). No data were excluded, and all labeled

images were used in both model training and evaluation.

Internal validation: stratified S-fold cross-validation

The complete dataset (n=318) was used in stratified S-fold
cross-validation, ensuring equal class distribution within each
fold. Each fold was trained for 100 epochs, with the model achiev-
ing the highest validation accuracy selected. The best epoch and
corresponding performance metrics—accuracy, precision, recall,
F1-score, and AUC—are summarized in Table 3.

The model demonstrated stable performance across most folds,
with 4 out of 5 achieving accuracy above 0.90 and AUC values
above 0.93. One fold (Fold S) showed relatively lower perfor-
mance but still maintained an AUC of 0.8202. Detailed training
curves for each fold are shown in Fig. 1, illustrating how both ac-

3/9


https://www.python.org/

Cm

The Ewha Medical Journal

Table 3. Fold-wise metrics for stratified 5-fold cross-validation

Fold Best epoch Accuracy Precision Recall F1-score AUC
100 0.9375 0.9677 0.9091 0.9375 0.9423
2 17 0.8906 0.8462 0.9706 0.9041 0.9353
3 4 09219 0.9143 0.9412 0.9275 0.9618
4 & 0.9206 0.9375 0.9091 0.9231 0.9707
5 31 0.7460 0.7429 0.7879 0.7647 0.8202
All performance metrics were rounded to 4 decimal places.
AUC, area under the curve.
e Fold 1: epoch accuracy e Fold 1: epoch AUC 0 Fold 2: epoch accuracy 0 Fold 2: epoch AUC
g £ 0.70
0 20 40 epoch 60 80 100 0 20 40 poch 60 80 100 0 20 40 Epoch 60 80 100 ] 20 40 - 60 80 100
G Fold 3: epoch accuracy G Fold 3: epoch AUC @ Fold 4: epoch accuracy m Fold 4: epoch AUC
g 0.80 § 08 g 0.75 é
£ 075 g 070 0.85

Epoch

Fold 5: epoch accuracy

Epoch

Fold 5: epoch AUC

o 20 40 60
Epoch

80

100

[ 20 40 60 80 100

Epoch

Epoch Epoch

Fig. 1. (A-J) Epoch-wise accuracy and area under the receiver operating characteristic curve (AUC) for each fold.

curacy and AUC progressed and converged over the 100 epochs.

The average epoch time per fold ranged from 8.3 to 8.6 seconds,

confirming the computational efficiency of ResNet-18 in this

small- to medium-scale medical imaging task.
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External validation: hold-out test with ensemble voting

To assess generalizability, a separate hold-out test set of 20 im-
ages was created. The hold-out set included 10 class 0 and 10 class
1 images, selected via stratified sampling for balanced class repre-
sentation. Detailed sample composition and individual model

predictions are provided in Supplement 2. These samples were
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excluded from training and reserved solely for external validation.
The remaining 298 images were used to train 5 ResNet-18 mod-
els using stratified 5-fold cross-validation. The best-performing
model for each fold was selected based on the highest classifica-
tion accuracy on the respective test fold. These models, trained on
the reduced dataset, demonstrated consistently high performance:
all folds achieved accuracy above 0.80 and AUC above 0.86, with
1 fold reaching 0.95 in both metrics (Table 4). These results indi-
cate stable and effective training despite the reduced sample size.
Detailed fold-wise metrics are presented below, and training

Table 4. Fold-wise metrics from training on the 298-image dataset

curves are shown in Fig. 2.

Each of the 5 models was then used to independently predict
the 20-image hold-out test set. Final ensemble predictions were
made using soft voting, averaging the predicted probabilities for
each class across the 5 models. The ensemble model correctly
classified 18 out of 20 images, achieving an accuracy of 0.9000.
Notably, all 10 class 1 images were correctly identified, resulting in
perfect recall for early hair loss detection. Two class 0 images were
misclassified as class 1. The ROC curve showed an AUC of 0.970,
and the 95% CI for accuracy, calculated using the Wald method,

Fold Best epoch Accuracy Precision Recall F1-score AUC
n 0.8333 0.8621 0.8065 0.8333 0.8788
2 14 0.8000 0.7632 0.9063 0.8286 0.8650
3 23 0.9500 09143 1.0000 0.9552 0.9542
4 22 0.8475 0.8929 0.8065 0.8475 0.9182
5 23 0.8644 0.8966 0.8387 0.8667 0.9389
AUC, area under the curve.
e Fold 1: accuracy 9 Fold 1: AUC 0 Fold 2: accuracy 0 Fold 2: AUC
0.84 Py 0.925
- 0.90 0.900
0.75 0.875
0.80 0.88
- . 0.850
14 g 0.86 g g 0.825
gomw = g s = 0.800
074 o84 : 0775
0.72 0.82 0.60 0.750
0.70 0.725
0 20 40 60 80 100 0 20 40 60 80 100 o 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch Epoch
G Fold 3: accuracy G Fold 3: AUC G Fold 4: accuracy m Fold 4: AUC
0.95 - 1.00 0.85 00
0.90 0.95 0.80
085 0.85
075
3 080 b > 0.80
% 0.75 é 0.85 g o § 0.75
N 0.70 065
0.80 0.70
0.65 0.60
0.60 0.75 055 065
055 0 20 40 60 80 100 0 20 40 60 80 100 o 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch Epoch
o Fold 5: accuracy o Fold 5: AUC
0.95
0.85 -
0.80 0.85
T 075 080
g 9
2 3 0.75
< 070 i
0.65 0.65
0.60
0.60
o 20 40 60 80 100 053 o 20 40 60 80 100

Epoch Epoch

Fig. 2. (A-J) Epoch-wise accuracy and area under the receiver operating characteristic curve (AUC) for each fold trained on 298

images.
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was 0.768 to 1.032.

The confusion matrix and ROC curve illustrating ensemble
performance are presented in Fig. 3. Detailed predictions for each
of the 20 hold-out images, including model-specific votes and en-

semble results, are provided in Supplement 3.

Discussion

Key results

This study developed a ResNet-18-based deep learning model
for classifying trichoscopic images by early-stage AGA severity us-
ing the BASP system. The model consistently demonstrated high
performance in internal validation via stratified S-fold cross-vali-
dation and maintained robust generalizability in external ensem-
ble testing. High accuracy and AUC values in both validation set-
tings confirmed the model’s reliable discrimination between
BASP 0 and BASP 1-3, even on previously unseen data.

Interpretation

The goal of this study was to assess the feasibility of deep learn-
ing for early-stage hair loss screening based on the BASP classifi-
cation. The model showed consistently high performance across
stratified internal folds, reflecting its ability to learn relevant pat-
terns from trichoscopic images despite the limited data. Notably,
4 out of § internal folds achieved strong accuracy and AUC scores,
with only 1 fold showing relatively reduced performance, likely
due to incidental variation in class composition within that partic-

A

Confusion matrix (hold-out ensemble)

10

True label

Prediction label

ular split. Nevertheless, this fold still maintained a respectable
AUC of 0.8202, suggesting overall robustness across validation
subsets.

This stability may be attributed to the binary simplification of
BASP labels (BASP 0 vs. BASP 1-3), which reduced class frag-
mentation and enhanced the signal-to-noise ratio during training.
Stratified S-fold cross-validation further mitigated bias from class
imbalance and ensured that every image contributed to both
training and validation—a critical design choice for small datasets.
Importantly, data augmentation was deliberately excluded, yet the
model still exhibited stable convergence across folds (Figs. 1, 2),
indicating that core patterns were sufficiently learnable from raw
image features alone.

Performance on the external hold-out test set further validated
the model’s generalizability. Ensemble soft voting, based on § in-
dependently trained models, successfully classified 18 out of 20
images, achieving 90% accuracy and an AUC of 0.970. All early
hair loss cases (class 1) were correctly identified, resulting in per-
fect recall. In clinical screening, such a low false-negative rate is
crucial for timely intervention and minimizing missed diagnoses.

These findings collectively suggest that, with careful design,
such as label restructuring, stratified sampling, and ensemble eval-
uation, even small, real-world clinical datasets can support the de-
velopment of reliable deep learning models for early-stage disease
detection. While the external test set was limited to 20 images, the
ensemble approach helped compensate for this limitation by re-
ducing model variance and strengthening prediction confidence.
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Fig. 3. Confusion matrix (A) and receiver operating characteristic (ROC) curve (B) for ensemble predictions on the hold-out set.

AUC, area under the ROC curve.
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Comparison with previous studies

While previous research has applied CNNs to dermatologic
imaging, few studies have specifically targeted early-stage AGA or
integrated BASP classification into model development. Most ex-
isting approaches rely on multiclass classification or segmentation
tasks, which typically require larger datasets and extensive manual
labeling,

In contrast, this study demonstrates that clinically meaningful
classification can be achieved through strategic label simplifica-
tion and robust validation strategies, even with limited data. By
employing stratified cross-validation and ensemble-based external
testing, this work addresses a common gap in medical artificial in-
telligence (AI) research: the reliance on internal metrics without
assessment of generalizability to unseen data.

Limitations

The main limitation of this study is its small sample size
(n=318), which may restrict generalizability. In particular, images
labeled as BASP 2 and 3 were underrepresented, potentially limit-
ing the model’s ability to learn nuanced patterns across progres-
sive hair loss stages. A larger, more diverse dataset would support
more robust training and enable a more comprehensive evalua-
tion, including an expanded hold-out test set. All images were ob-
tained from a single institution under specific imaging conditions,
which may not capture the full variability seen in wider clinical
settings, such as differences in scalp types, lighting, or trichoscop-
ic equipment. Additionally, only one CNN architecture (Res-
Net-18) was evaluated. Comparative assessments across multiple
architectures or training configurations could provide greater in-
sight into model optimization.

Training hyperparameters, such as batch size and learning rate,
were not systematically optimized. Although a batch size of 8 was
initially tested, training did not converge effectively under that
condition. A batch size of 128 was subsequently adopted based on
successful convergence and was maintained throughout the study.
Beyond this adjustment, no systematic exploration or substudy
was conducted to identify optimal configurations for further im-
proving model performance in this dataset.

Finally, the performance variability observed across cross-vali-
dation folds—most notably in Fold S—highlights the models
sensitivity to class composition and sampling variation, under-
scoring the challenges of training on limited, imbalanced medical

datasets.
Generalizability
Despite the limited dataset, ensemble-based hold-out testing

demonstrated strong generalizability to unseen images. The mod-
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el’s high recall for early-stage AGA suggests potential clinical value
as a screening tool, especially in resource-limited settings such as
primary care or teledermatology. However, because all data were
sourced from a single institution using one specific dermoscopy
device, and all images were from Korean patients, broader gener-
alization across different populations (varying in age, sex, ethnici-
ty, and imaging equipment) will require future validation using

multicenter, multi-ethnic, and multi-device datasets.

Suggestions for further studies

To build upon these findings and develop a practical diagnostic
framework for early-stage AGA, several future directions are sug-
gested.

First, multicenter data collection encompassing diverse popula-
tions, imaging devices, and clinical environments is essential to
enhance generalizability and reduce bias related to demographics
or equipment. Larger and more balanced datasets would also en-
able finer label granularity—for example, distinguishing BASP 1
(early) from BASP 2-3 (progressive) —to better reflect the clini-
cal spectrum of hair loss.

Second, comparative evaluation of alternative neural network
architectures, such as EfficientNet, DenseNet, or vision trans-
formers, should be performed to identify optimal trade-offs
among diagnostic accuracy, computational efficiency, and deploy-
ment feasibility.

Third, integrating explainability techniques (such as Grad-
CAM) and uncertainty quantification methods (like CIs or Mon-
te Carlo dropout) may improve clinical trust and facilitate hu-
man-—AlI collaboration. Fairness metrics should also be monitored
to assess potential bias across age, sex, or ethnicity subgroups.

Finally, real-world implementation studies in primary care or
teledermatology—including workflow simulations and user feed-
back—will be vital for validating the model’s practical utility and
educational value in early diagnosis scenarios.

Conclusion

This study demonstrated the feasibility of a deep learning—
based approach for early detection of AGA by leveraging BASP
score classification. By simplifying the task to a binary distinction
between non-hair loss (BASP 0) and early hair loss (BASP 1-3),
the model achieved strong performance in both internal valida-
tion and ensemble-based external testing, without requiring data
augmentation or extensive hyperparameter tuning. The use of
stratified cross-validation and ensemble soft voting enabled robust
learning even with a limited dataset, suggesting practical applica-
bility in clinical screening scenarios. In particular, the high recall
for early hair loss cases indicates strong potential for timely inter-
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Fig. 4. (A, B) Example of scalp image and Basic and Specific (BASP) classification data.

vention. These results support the integration of automated
BASP-based assessment tools into dermatological workflows,
promoting more standardized and objective evaluation of hair
loss in clinical and teledermatology practice.

Furthermore, such deep learning—based systems may reduce
the burden of manual labeling, minimize subjectivity in early hair
loss diagnosis, and offer consistent alerts for possible AGA, there-
by improving the accessibility, accuracy, and standardization of

dermatologic care.
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